Kinetic Study on the Relaxation of $S_2(X^3\Sigma_g^-, a^1\Delta_g)$
by Collisions with He

○Keigo Fujihara1, Jun Yamashita2,
Hiroshi Kohguchi1, and Katsuyoshi Yamasaki1

1 Hiroshima Univ., 2 Nippon Starch Chemical Company, Ltd.

There have been few reports on the vibrational relaxation of S_2 in contrast to those of the congeneric molecules O_2 and SO. We have determined the rate coefficients for relaxation of vibrationally excited S_2 in two electronic states $X^3\Sigma_g^-$ and $a^1\Delta_g$.

A gaseous mixture of OCS and He in a flow cell at 298 K was irradiated with a KrF laser (248 nm) and the following $S^1(D) + OCS$ reaction generated $S_2 (X^3\Sigma_g^-, a^1\Delta_g)$. The two electronic states were detected with laser-induced fluorescence (LIF) via the $B^3\Sigma_u^- - X^3\Sigma_g^-$ and $f^1\Delta_u^- - a^1\Delta_g$ transitions. The excited fluorescence was dispersed with a monochromator ($f = 125$ cm) to detect a single vibrational level. Time-resolved LIF intensities of a pair of adjacent vibrational levels were recorded at different He pressures (Fig. 1 shows $S_2(X^3\Sigma_g^-, v = 1, 2)$). Kinetic analysis based on the integrated profile method has given the pseudo first-order rate coefficients k_v. The bimolecular rate coefficients for relaxation of S_2 (Table 1) have been obtained from [He]-dependence of k_v (Fig. 2 shows $S_2(X^3\Sigma_g^-, v = 1, 2)$).

![Fig. 1. Time-resolved LIF intensities of (a) $v = 2$ and (b) $v = 1$ of $S_2(X^3\Sigma_g^-)$. The gray dots denote observed data and the black dots in (b) are the results of simulation.](attachment:image1.png)

![Fig. 2. [He]-dependence of the pseudo first-order rate coefficient k_v for $S_2(X^3\Sigma_g^-, v = 1, 2)$](attachment:image2.png)

| Table 1. Rate coefficients for vibrational relaxation of S_2 by He.a |
|---------------------------------|----------------|----------------|
| electronic state | $v = 1$ | $v = 2$ |
| $X^3\Sigma_g^-$ | $(6.6 \pm 0.7)^b \times 10^{-14}$ | $(1.1 \pm 0.2)^b \times 10^{-13}$ |
| $a^1\Delta_g$ | 6.3×10^{-14} | $(1.2 \pm 0.2)^b \times 10^{-13}$ |

a in units of cm3 molecule$^{-1}$ s$^{-1}$. b The stated confidence limits are 2σ.

References